MRA Toolbox v. 1.0: a web-based toolbox for predicting mixture toxicity of chemical substances in chemical products | Scientific Reports – Nature.com

  • Hartung, T. & Rovida, C. Chemical regulators have overreached. Nature 460, 1080–1081 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • Bopp, S. K. et al. Regulatory assessment and risk management of chemical mixtures: Challenges and ways forward. Crit. Rev. Toxicol. 49, 174–189 (2019).

    PubMed  Google Scholar 

  • Kortenkamp, A. & Altenburger, R. Approaches to assessing combination effects of oestrogenic environmental pollutants. Sci. Total Environ. 233, 131–140 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • Rajapakse, N., Silva, E. & Kortenkamp, A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ. Health Perspect. 110, 917–921 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter, H., Consolaro, F., Gramatica, P., Scholze, M. & Altenburger, R. Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). Ecotoxicology 11, 299–310 (2002).

    CAS  PubMed  Google Scholar 

  • Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900–1915 (2003).

    CAS  PubMed  Google Scholar 

  • Vighi, M. et al. Water quality objectives for mixtures of toxic chemicals: Problems and perspectives. Ecotoxicol. Environ. Saf. 54, 139–150 (2003).

    CAS  PubMed  Google Scholar 

  • Lydy, M., Belden, J., Wheelock, C., Hammock, B. & Denton, D. Challenges in regulating pesticide mixtures. Ecol. Soc. 9, 1–15 (2004).

    Google Scholar 

  • Breitholtz, M., Nyholm, J. R., Karlsson, J. & Andersson, P. L. Are individual NOEC levels safe for mixtures? A study on mixture toxicity of brominated flame-retardants in the copepod Nitocra spinipes. Chemosphere 72, 1242–1249 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • de March, B. G. E. Mixture Toxicity Indices in acute lethal toxicity tests. Arch. Environ. Contam. Toxicol. 16, 33–37 (1987).

    Google Scholar 

  • Cassee, F. R., Groten, J. P., Bladeren, P. J. & Feron, V. J. Toxicological evaluation and risk assessment of chemical mixtures. Crit. Rev. Toxicol. 28, 73–101 (1998).

    CAS  PubMed  Google Scholar 

  • Valerio, L. G. In silico toxicology for the pharmaceutical sciences. Toxicol. Appl. Pharmacol. 241, 356–370 (2009).

    CAS  PubMed  Google Scholar 

  • Cipullo, S., Snapir, B., Prpich, G., Campo, P. & Coulon, F. Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models. Chemosphere 215, 388–395 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • Duan, Q. et al. Machine learning for mixture toxicity analysis based on high-throughput printing technology. Talanta 207, 120299 (2020).

    CAS  PubMed  Google Scholar 

  • Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016).

    Google Scholar 

  • Peng, Y., Zhang, Z., Jiang, Q., Guan, J. & Zhou, S. TOP: A deep mixture representation learning method for boosting molecular toxicity prediction. Methods 179, 55–64 (2020).

    CAS  PubMed  Google Scholar 

  • Kavlock, R. J. et al. Reviews: computational toxicology—a state of the science mini review. Toxicol. Sci. 103, 14–27 (2008).

    CAS  PubMed  Google Scholar 

  • Kim, J., Kim, S. & Schaumann, G. E. Reliable predictive computational toxicology methods for mixture toxicity: Toward the development of innovative integrated models for environmental risk assessment. Rev. Environ. Sci. Bio. Technol. 12, 235–256 (2013).

    CAS  Google Scholar 

  • Loewe, S. & Muischnek, H. Über Kombinationswirkungen. Arch. f. Exp. Pathol. u. Pharmakol 114, 313–326 (1926).

    CAS  Google Scholar 

  • Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).

    CAS  Google Scholar 

  • Cedergreen, N. et al. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ. Toxicol. Chem. 27, 1621–1632 (2008).

    CAS  PubMed  Google Scholar 

  • Howard, G. J. & Webster, T. F. Generalized concentration addition: A method for examining mixtures containing partial agonists. J. Theor. Biol. 259, 469–477 (2009).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • Kim, J., Kim, S. & Schaumann, G. E. E. Development of QSAR-based two-stage prediction model for estimating mixture toxicity. SAR QSAR Environ. Res. 24, 841–861 (2013).

    CAS  PubMed  Google Scholar 

  • Boberg, J. et al. Chemical Mixture Calculator—A novel tool for mixture risk assessment. Food Chem. Toxicol. 152, 112167 (2021).

    CAS  PubMed  Google Scholar 

  • van der Voet, H. et al. The MCRA toolbox of models and data to support chemical mixture risk assessment. Food Chem. Toxicol. 138, 111185 (2020).

    PubMed  Google Scholar 

  • Kim, S. et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49, D1388–D1395 (2021).

    CAS  PubMed  Google Scholar 

  • Junghans, M., Backhaus, T., Faust, M., Scholze, M. & Grimme, L. H. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat. Toxicol. 76, 93–110 (2006).

    CAS  PubMed  Google Scholar 

  • Corp, L.O.A.D. Material safety data sheet – CHEMLOK 144 primer. https://www.lord.com/sites/default/files/Documents/SafetyDataSheets/_CHEMLOK_144_.pdf (2017).

  • Nielsen, G., Heiger-Bernays, W. J., Schlezinger, J. J. & Webster, T. F. Predicting the effects of per- and polyfluoroalkyl substance mixtures on peroxisome proliferator-activated receptor alpha activity in vitro. Vitr. Toxicol. 465, 153024 (2022).

    CAS  Google Scholar 

  • Hobson, J. CentOS 6 Linux server cookbook: A practical guide to installing, configuring, and administering the CentOS community-based enterprise server (2013).

  • Bergsten, H. JavaServer Pages 3rd edn. (O’Reilly & Associates Inc, 2003).

    Google Scholar 

  • Team, R Core. R: A language and environment for statistical computing. MSOR connections, 1 (2014).

  • Zhu, X. W. & Chen, J. Y. Mixtox: An R package for mixture toxicity assessment. R J. 8, 422–434 (2016).

    Google Scholar 

  • Jolliffe, I. T. Principal Component Analysis 2nd edn. (Springer, 2002).

    MATH  Google Scholar 

  • Giri, V., Sivakumar, T. V., Cho, K. M., Kim, T. Y. & Bhaduri, A. RxnSim: A tool to compare biochemical reactions. Bioinformatics 31, 3712–3714 (2015).

    CAS  PubMed  Google Scholar 

  • Godden, J. W., Xue, L. & Bajorath, J. Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J. Chem. Inf. Comput. Sci. 40, 163–166 (2000).

    CAS  PubMed  Google Scholar 

  • Mauri, A. alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints. Ecotoxicological QSARs. Humana (Humana, New York, NY, 2020).

  • O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 1–14 (2011).

    Google Scholar 

  • Karulin, B. & Kozhevnikov, M. Ketcher: Web-based chemical structure editor. J. Cheminform. 3, 2011 (2011).

    Google Scholar 

  • Marin, F., Rohatgi, A. & Charlot, S. WebPlotDigitizer, a polyvalent and free software to extract spectra from old astronomical publications: application to ultraviolet spectropolarimetry. arXiv preprint arXiv:1708.02025 (2017).

  • Leave a Reply

    Your email address will not be published.